联系方式

公司地址:兴义市幸福路1号,邮政银行对面天桥旁
公司电话:0859-3221725
公司官网:
www.yseduc.com
公司网站:www.ysedut.com

个性化
      因材施教,让每一个学生享受高品质教育。特开办一对一辅导,一个老师教一个学生,学生那里不懂问那里,老师对学生存在问题一一讲解,让学生最大程度的提高。
小班化 
      义升教育兴义辅导班人数严格控制在4人以下。4人小班既能提供良好的课堂氛围,又能给学生更多的学习交流机会,同时老师也有有足够的精力“一对一”指导每一位学生,有助于教师精雕细刻,打造精品,培育英才。
系统化 
      义升教育教师团队由专业全职教师、重点中学兼职教师、硕士研究生组成,根据学生不同学科、不同基础和学习能力强弱的差别,做到因材施教,查漏补缺,培优、补良、拔高,快速提高学生的学习能力。
特色化
      义升教育方法:夯实基础、传授方法、开发智力。
      自由选择时间:按照正常上课时间进行学习还是特定时间学习,完全可以自由选择。
开设科目           
      初中:数学、英语、物理、化学、语文
      高中:数学、英语、物理、化学、语文、生物 、地理、历史、政治
报名须知
辅导时间:星期一至星期天08:00——10:00,10:00——12:00,14:00——16:00,16:00——18:00,19:30——21:30(一个时间段为3节课,根据自身情况选择相应时间段)。
收费标准:
    专业级(义升教育专业全职教师任教
    初中部
    学期周末班:小班:80元/3节课,320元/月;一对一:160元/3节课,
    暑假寒假班:小班:800元/周期,一对一:1600元/周期;
    高中部
    学期周末班:小班:100元/3节课,400元/月;一对一:200元/3节课,
    暑假寒假班:小班:100元/周期,一对一:2000元/周期;
    高级(义升教育高级教师任教)
    初中部
    学期周末班:小班:120元/3节课,480元/月;一对一:260元/3节课,
    暑假寒假班:小班:1000元/周期,一对一:2600元/周期;
    高中部
    学期周末班:小班:150元/3节课,600元/月;一对一:300元/3节课,
    暑假寒假班:小班:1500元/周期,一对一:3000元/周期;
    特级VIP(20年以上相应科目教学经验的特级教师任教)
    初中部
    学期周末班:小班:200元/3节课,800元/月;一对一:400元/3节课,
    暑假寒假班:小班:2000元/周期,一对一:4000元/周期;
    高中部
    学期周末班:小班:240元/3节课,960元/月;一对一:480元/3节课,
    暑假寒假班:小班:2400元/周期,一对一:4800元/周期;
   (注:3节课为两个小时,一个周期为10天,不同老师学费有所不同,每个接受辅导的学生,默认安排10年左右教学经验者的老师;要特级教师请先预约
保证教学效果,每个老师都是经过机构严格筛选,这里有更好的老师,学生可以选择最适合自己的老师,可以先免费试听,满意后报名。
校区地址:
亿升校区地址:兴义市云南路40号(幸福路1号中国邮政银行对面天桥旁,一到四楼)
龙成校区地址:兴义市延安路42号(市教育局对面向上300米,龙成培训)
盘州校区地址:盘州市江源路东湖国际一栋二单元16楼
册亨校区地址:册亨县金利商住城三栋负2—1号门面
咨询电话:0859-3221725(办公室)  18785939989(唐老师)
亿升培训网站:www.yseduc.com

当前位置: 网站首页 > 教育资讯
教育资讯

高考数学如何拿高分?

数学是理科思维的集大成者,数学题型千变万化。如何学好数学?怎么做才能得高分?今天学习哥为同学们整理了高考数学“必做清单”,助您在高考中顺利拿高分!
 
数学题型千变万化,解题方法及其组合也是千差万别。很多题目都是到处设坑埋雷,如何利用笔记本和错题本避免这些?
笔记本
1.记录课堂老师讲解的例题,并把每个例题做一个总结。要总结到例题中某知识点的用法,此类型题目的解法,还有一些特殊技巧等。
2.记录各种公式以及变形公式。本身就是一个公式或是一个规律性的结论,我们姑且把它们叫做二类公式或二类定理。如三角函数一章,这需要你理清各个公式来源和推导过程。
3.对于概念,要记录老师强调的要点、关键词、以及更深层次的理解。
4.对于定理,要记录定理的使用条件及用法。
5.对于公式,要记录老师总结的结构特征、变形特征、记忆方法、使用技巧等。
重点提醒:记笔记不是一字不落地全记上,而要简明扼要,利用短语、数字、图案等适合自己的方式把重点、难点、疑点等内容记下,课后再认真整理。
错题本
1.标注出错因分析。“概念错误”“思路错误”“理解错误”“审题错误”“抄写错误”“笔误错误”等。
 
2.标注出错误知识点:数列、函数、解析等。
3.标注出“同类错误”:第几页第几题等等。
4.按照不同的知识点分类整理错题,做好错题本的目录,方便下次查找。
5.双曲线专题。整理一道全面的例题。方法一样的就选一个难的,然后一遍一遍地
看,因为虽然题很多,但是万变不离其宗。
6.函数弱点,错的不能再错的傻题一定要记下来,不要嫌麻烦,不然同样类型还是错。
7.可以利用便利贴,记录需要重点掌握的内容。
 
重点提醒:把错题本和笔记本有机联系起来,比如笔记本上面一个重要的知识点旁边可以标明,此处经典错题见错题本第XX页。同样,错题本上誊抄的错题,最好也要记上这里的知识点在笔记本的哪一页。
 
在数学学习和考试中,有样东西最容易被忽视,那就是“草稿”。
参加过中高考的同学都知道,数学考试除了会发试题和答题卡,草稿也是考试的一部分。今天,学习哥就来跟大家说说“打草稿”的玄机,它对你的数学考试至关重要。
打草稿的重要性
打草稿,它能尽可能地保证计算过程和结果的正确性。尤其是涉及大量计算的题型,打草稿就显得特别重要。
很多同学不喜欢打草稿的原因主要有两个:
其一是没有意识到打草稿的重要性,从而没有养成习惯;
其二是觉得打草稿浪费时间,想把打草稿的时间留出来去做更多的题。这样的结果就是,每次都会犯错,而且很多做错了的题并不难,不是不会,而是算错了。
典型的两种草稿
第一种草稿无论切换到哪个角度都能找到草稿的痕迹,说不好听点,就是乱七八糟,回看的时候找不到方向、看不出重点,等到誊抄答案、检查结果时很容易出错,重新算一遍又浪费了时间。
也正是因为如此,有非常多的学生在数理化科目考试的时候,本来在草稿上演算时是有些思路的,但东一个步骤,西一个结果,回过头在试卷上做题的时候却反而混乱了,原因就是草稿太乱,没有形成很清晰的逻辑和思路。
另一种草稿,既书写规范,又步骤清晰,还有题号,这种做法在誊抄解题过程和最后检验的时候一般不会出错,一旦计算有纰漏也很容易发现问题出在哪里,并及时补救。
那些成绩优秀的同学,平时就很注重规范草稿演算,这有助于他们理顺自己的思路,减少不必要的失误。相应的,他们在学习的其他方面也比其他同学要更有条理一些,这就是学习成绩好的细节所在!
好的草稿应该是这样的
1、书写要规范有顺序。要和作业一样认真书写,而不能书写马虎,否则会带来很多不必要的错误。
2、一行写一排数字,而不要两行数字挤在一起写。不要写得太满,要让草稿纸版面清晰,因为有的学生在打草稿时“过于节省”,见缝插针地用草稿本,导致整个草稿纸满满的,看起来很让人头大。
3、画图仍然要用作图工具画。但速度要快一点,不求精益求精,但不能影响做题,毕竟考试时间是宝贵的。
4、考试时,如果遇到不敢确定的题,要注明检查环节,便于最后查漏补缺。
5、草稿纸上要有分区或有分割线隔断。有的时候两道题的草稿内容挨得太近,就一定要用分割线把题与题之间的草稿内容隔开,以免在试卷上作答时把A题的过程誊抄到B题的答题区域内。
6、标记题号。无论是平时做数学作业,还是正式考试,在草稿上标记好题号,通过题号来定位在草稿纸上的位置,一目了然,方便快速查找。
7、按顺序打草稿。有的学生在打草稿时,喜欢挑空白的地方,以至于各个方向都有草稿,那样就只要“草”没有“稿”了,过一会儿自己都找不到,考试中这样的草稿是绝对不行的。
8、计算步骤、大纲、思路基本完整,过程大致规范。为什么说“基本”、“大致”呢,因为草稿的功能就是如此。计算跳步,一会儿错了还是找不到问题,检查不出来。不完整的草稿,和没有差不多;过于细致那倒也用不着。
让草稿本不“草”,变“草”为宝,这是每一个学生的优异成长基石。
优秀的草稿是一笔宝贵的学习财富,满载着同学们分析问题、解决问题的思维痕迹,不仅使学习效率得到较大的提升,还能有效地提高学习成绩。
 
选择题——“不择手段”
(1)注意审题。把题目多读几遍,弄清这个题目求什么,已知什么,求、知之间有什么关系,把题目搞清楚了再动手答题。
(2)答题顺序不一定按题号进行。可先从自己熟悉的题目答起,从有把握的题目入手,使自己尽快进入到解题状态,产生解题的激情和欲望,再解答陌生或不太熟悉的题目。若有时间,再去拼那些把握不大或无从下手的题。这样也许能超水平发挥。
(3)数学选择题大约有70%的题目都是直接法,要注意对符号、概念、公式、定理及性质等的理解和使用,例如函数的性质、数列的性质就是常见题目。
(4)挖掘隐含条件,注意易错易混点,例如集合中的空集、函数的定义域、应用性问题的限制条件等。
(5)方法多样,不择手段。高考试题凸现能力,小题要小做,注意巧解,善于使用数形结合、特值(含特殊值、特殊位置、特殊图形)、排除、验证、转化、分析、估算、极限等方法,一旦思路清晰,就迅速作答。不要在一两个小题上纠缠,杜绝小题大做,如果确实没有思路,也要坚定信心,“题可以不会,但是要做对”,即使是“蒙”也有25%的胜率。
(6)控制时间。一般不要超过40分钟,最好是25分钟左右完成选择题,争取又快又准,为后面的解答题留下充裕的时间,防止“超时失分”。
填空题——“直扑结果”
由于填空题和选择题有相似之处,所以有些解题策略是可以共用的,在此不再多讲,只针对不同的特征给几条建议:
一是填空题绝大多数是计算型(尤其是推理计算型)和概念(或性质)判断性的试题,应答时必须按规则进行切实的计算或合乎逻辑的推演和判断;
二是作答的结果必须是数值准确,形式规范,例如集合形式的表示、函数表达式的完整等,结果稍有毛病便是零分;
三是《考试说明》中对解答填空题提出的要求是“正确、合理、迅速”,因此,解答的基本策略是:快——运算要快,力戒小题大做;稳——变形要稳,防止操之过急;全——答案要全,避免对而不全;活——解题要活,不要生搬硬套;细——审题要细,不能粗心大意。
解答题——“步步为营”
对于会做的题目,要解决“会而不对,对而不全”这个老大难问题。
有的考生拿到题目,明明会做,但最终答案却是错的———会而不对。
有的考生答案虽然对,但中间有逻辑缺陷或概念错误,或缺少关键步骤———对而不全。
因此,会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被“分段扣分”。经验表明,对于考生会做的题目,阅卷老师则更注意找其中的合理成分,分段给点分,所以“做不出来的题目得一二分易,做得出来的题目得满分难”。
对绝大多数考生来说,更为重要的是如何从拿不下来的题目中分段得点分。我们说,有什么样的解题策略,就有什么样的得分策略。把你解题的真实过程原原本本写出来,就是“分段得分”的全部秘密。
①缺步解答:如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败。特别是那些解题层次明显的题目,或者是已经程序化了的方法,每一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,这叫“大题拿小分”。
②跳步答题:解题过程卡在某一过渡环节上是常见的。这时,我们可以先承认中间结论,往后推,看能否得到结论。
如果不能,说明这个途径不对,立即改变方向;
如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”。
由于考试时间的限制,“卡壳处”的攻克如果来不及了,就可以把前面的写下来,再写出“证实某步之后,继续有……”一直做到底。也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面。若题目有两问,第一问想不出来,可把第一问作“已知”,先做第二问,这也是跳步解答。
③退步解答:“以退求进”是一个重要的解题策略。如果你不能解决所提出的问题,那么,你可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从较强的结论退到较弱的结论。总之,退到一个你能够解决的问题。为了不产生“以偏概全”的误解,应开门见山写上“本题分几种情况”。这样,还会为寻找正确的、一般性的解法提供有意义的启发。
④辅助解答:一道题目的完整解答,既有主要的实质性的步骤,也有次要的辅助性的步骤。实质性的步骤未找到之前,找辅助性的步骤是明智之举。
如:准确作图,把题目中的条件翻译成数学表达式,设应用题的未知数等。答卷中要做到稳扎稳打,字字有据,步步准确,尽量一次成功,提高成功率。试题做完后要认真做好解后检查,看是否有空题,答卷是否准确,所写字母与题中图形上的是否一致,格式是否规范,尤其是要审查字母、符号是否抄错,在确信万无一失后方可交卷。
 
在高考时很多同学往往因为时间不够导致数学试卷不能写完,试卷得分不高,掌握解题思想可以帮助同学们快速找到解题思路,节约思考时间。以下总结高考数学五大解题思想,帮助同学们更好地提分。
1.函数与方程思想
函数与方程的思想是中学数学最基本的思想。所谓函数的思想是指用运动变化的观点去分析和研究数学中的数量关系,建立函数关系或构造函数,再运用函数的图像与性质去分析、解决相关的问题。而所谓方程的思想是分析数学中的等量关系,去构建方程或方程组,通过求解或利用方程的性质去分析解决问题。
2.数形结合思想
数与形在一定的条件下可以转化。如某些代数问题、三角问题往往有几何背景,可以借助几何特征去解决相关的代数三角问题;而某些几何问题也往往可以通过数量的结构特征用代数的方法去解决。因此数形结合的思想对问题的解决有举足轻重的作用。
解题类型
①“由形化数”:就是借助所给的图形,仔细观察研究,提示出图形中蕴含的数量关系,反映几何图形内在的属性。
②“由数化形” :就是根据题设条件正确绘制相应的图形,使图形能充分反映出它们相应的数量关系,提示出数与式的本质特征。
③“数形转换” :就是根据“数”与“形”既对立,又统一的特征,观察图形的形状,分析数与式的结构,引起联想,适时将它们相互转换,化抽象为直观并提示隐含的数量关系。
3.分类讨论思想
分类讨论的思想之所以重要,原因一是因为它的逻辑性较强,原因二是因为它的知识点的涵盖比较广,原因三是因为它可培养学生的分析和解决问题的能力。原因四是实际问题中常常需要分类讨论各种可能性。
解决分类讨论问题的关键是化整为零,在局部讨论降低难度。
常见的类型
类型1:由数学概念引起的的讨论,如实数、有理数、绝对值、点(直线、圆)与圆的位置关系等概念的分类讨论;
类型2:由数学运算引起的讨论,如不等式两边同乘一个正数还是负数的问题;
类型3 :由性质、定理、公式的限制条件引起的讨论,如一元二次方程求根公式的应用引起的讨论;
类型4:由图形位置的不确定性引起的讨论,如直角、锐角、钝角三角形中的相关问题引起的讨论。
类型5:由某些字母系数对方程的影响造成的分类讨论,如二次函数中字母系数对图象的影响,二次项系数对图象开口方向的影响,一次项系数对顶点坐标的影响,常数项对截距的影响等。
分类讨论思想是对数学对象进行分类寻求解答的一种思想方法,其作用在于克服思维的片面性,全面考虑问题。分类的原则:分类不重不漏。
4.转化与化归思想
转化与化归是中学数学最基本的数学思想之一,是一切数学思想方法的核心。数形结合的思想体现了数与形的转化;函数与方程的思想体现了函数、方程、不等式之间的相互转化;分类讨论思想体现了局部与整体的相互转化,所以以上三种思想也是转化与化归思想的具体呈现。
转化包括等价转化和非等价转化,等价转化要求在转化的过程中前因和后果是充分的也是必要的;不等价转化就只有一种情况,因此结论要注意检验、调整和补充。转化的原则是将不熟悉和难解的问题转为熟知的、易解的和已经解决的问题,将抽象的问题转为具体的和直观的问题;将复杂的转为简单的问题;将一般的转为特殊的问题;将实际的问题转为数学的问题等等使问题易于解决。
常见的转化方法
①直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题;
②换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题;
③数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径;
④等价转化法:把原问题转化为一个易于解决的等价命题,达到化归的目的;
⑤特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问题,使结论适合原问题;
⑥构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题;
⑦坐标法:以坐标系为工具,用计算方法解决几何问题也是转化方法的一个重要途径。
5.特殊与一般思想
用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用。
6.极限思想
极限思想解决问题的一般步骤为:一、对于所求的未知量,先设法构思一个与它有关的变量;二、确认这变量通过无限过程的结果就是所求的未知量;三、构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。

标签:  高考数学如何拿高分?
分享到:
点击次数:  更新时间:2018-04-14 20:35:11  【打印此页】  【关闭